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Final Report: 
Intranet Delivery of Simulation-Centered Tutoring^ 

Allen Munro 
Quentin A. Pizzini 
Mark C. Johnson 

Josh Walker 
David Siormon 

University of Southern California 

Summary 

The first goal of this project was to develop a capability to deliver interactive technical 
training, including artificially intelligent maintenance tutors authored using DIAG and 
the RIDESA'^IVIDS authoring tools. The research products RIDES (Munro, Johnson, 
Surmon & Wogulis, 1993; Munro, 1994; Munro, Johnson, Pizzini, Surmon, Towne & 
Wogulis, 1997) and VIVIDS (Munro & Pizzini, 1998) are integrated authoring and 
delivery software systems for creating and presenting interactive simulation-centered 
training environments. These systems were used to create DIAG (Towne, 1996), a tool 
for providing intelligent instructional guidance during simulation-based maintenance 
troubleshooting training. 

Two major technical advances were required to facilitate the eventual transition of the 
RIDES, VIVIDS, and DIAG research products to meet Navy training requirements. First, 
it was essential that the software should be able to nm on Windows systems, and ideally 
other operating systems, as well.^ It was necessary that the new system be platform- 
independent, so that it could be delivered on a variety of platforms found in Navy 
environments, including all modem Windows operating systems, as well as Unix and 
Linux. Second, the increasing importance of intranets and of the Internet for military 
training called for the capability of on-demand distributed learning. A network- 
deliverable implementation of a simulation-centered learning platform was called for. If 
this distance learning software could be made compatible with the RIDESA'^IVIDS 
system, then previously developed training applications, such as DIAG, could be made 
available as distance learning modules. 

This is the Final Report on research conducted under Office of Naval Research Contract No. 
NOOO14-98-1-0510, Intranet delivery of authored simulation-centered tutors. 
The original RIDES project (supported by Air Force Contract No. F33615-90-C-0001, which included 
Office of Naval Research co-sponsorship) had requirements that could be provided only by Unix 
operating systems when that effort began in 1990. Hence, RIDES and its immediate successor, VIVIDS 
were developed using Unix and a Unix-only application framework. Interviews (Linton & Vlissides, 
1989; Vlissides, 1990). 
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A new simulation training delivery system, to be called iRides—for Intranet RIDES, was 
a target research product for this project. iRides was to have the following two major 
characteristics: 

• Network-safe intranet access to simulations for training 
• Ability to deliver simulations authored with RIDES/VIVIDS 

- including the ability to run DIAG, the most complex application of RIDES 

Development of iRides required a completely new implementation of a RIDESA'^IVIDS 
style simulation system, because the C++ code of VIVIDS could not be directly adapted 
to support intranet delivery. It would be necessary to use the Java programming language 
to create the intranet-deliverable iRides simulation delivery software. (The feasibility of 
this approach had been demonstrated in a prototype simulation player, called jRides, 
which was developed in Java in 1997. jRides implemented the expression syntax of 
VIVIDS, and a subset of its simulation language fimctions, using a rudimentary approach 
to simulation graphics.) Although the transition to a complete implementation in a new 
programming language imposed a significant design and implementation workload, this 
necessity also presented an opportxmity to advance the state of the art by introducing 
additional capabilities into the new simulation delivery system. These capabilities are 
described below in the Results section. In brief, however, these enhancements included 

• Additional data types for simulation attributes 
• An improved, extensible simulation language with flexible expression syntax 
• Support for cloned simulation objects, in order to provide simulations that have 

on-the-fly creation of new objects 
• Improved graphics capabilities 
• Simulator support for interactive debugging in iRides 

In order to run original VIVIDS simulations, iRides had to be able to read files produced 
by VIVIDS. The original VIVIDS file format was a complex binary format based on a 
commercial library for representing complex reference relationships. There were several 
problems with continuing to use this file format for the new iRides research product. One 
of these was that binary file formats effectively render all authored information vendor- 
dependent. Future computing systems would not be able to even display the content of 
such files if those systems did not support the authoring tools that created them. There 
has been a long history in the aviation commimity of large-scale training products 
becommg obsolete, not because the content of those trainers became outmoded, but 
because it became impossible to buy computers that could run the antique operating 
system and software of those systems. Use of a himian-readable text format would 
improve the chances of costly content development remaining usable for the foreseeable 
fixture. VIVIDS itself was modified so that it would be able to output previously authored 
simulations in the iRides text file format. 

The first goal of the project, implementing a multi-platform, network-delivered 
simulation envirormient for training that could deliver applications as complex as DIAG, 
was achieved very well during the course of this project. 
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Authoring iRides simulations in the native iRides context, rather than only in VIVIDS 
was a second major goal of this project. Native authoring w^ould make it possible to 
create new distance learning simulations without having to make use of VIVIDS and the 
Unix platforms on which VIVIDS runs. New editor interfaces were developed in Java for 
the iRides environment, including object lists, object data editors, attribute data editors 
(including constraint editing), and event editors. This simulation behavior authoring 
system was in a very usable state at the completion of this project. It has since continued 
to be improved under Future Naval Capability (FNC) ONR funding, as is briefly 
described at the end of this report. 

A third major goal of this project was providing support for the transition of BEESIM 
basic electricity and electronics lessons developed with classic VIVIDS to the iRides 
environment, and, later in the project, to contribute to the BEESIM development effort. 
This effort revealed a number of problems, including the need to anticipate expectations 
in the computer based instruction community that all authoring systems must make use of 
a page-turning model of presentation, the need to make notions of 'lesson' and 'course' 
more flexible, and the difficulties of implementing an entirely new training delivery 
framework, based only in part on iRides, in a very short period of time. Certain of the 
lessons of this effort have resulted in improvements to later versions of iRides, which are 
still under development at the University of Southern California. These impacts are 
briefly described in the final section of this report, Continued iRides Development. 

Background 

Modem computer-based learning environments can benefit from action centered training 
techniques. In action centered training, a tutorial entity observes student performance in 
an action context and carries out pedagogical activities in that context. Action contexts are 
often simulations, but other action contexts are possible. In embedded training, for 
example, complex equipment systems based on computers can serve as action centered 
learning contexts. Interactive simulations and embedded training systems can help to 
ensure that job-related performance skills—as opposed to mere test-taking skills—^are 
acquired as a result of training. 

Many earlier research projects on advanced tutoring systems have incorporated 
simulations that were developed using low level tools (i.e., programming languages) to 
develop both the tutorials and the simulations. Reliance on such low-level development 
techniques naturally makes simulation-centered tutoring extremely expensive. It can also 
make it very difficuh to determine what features of a particular tutor are responsible for 
its efficacy (or lack thereof). Authoring systems, by ensuring a uniform quality of low- 
level instructional interaction and by providing easily edited and modifiable tutorials and 
simulations, can make it possible for developers to experiment with different high-level 
approaches to training in a given domain. 

Consider an environment that is designed to help aircraft mechanics learn how to carry 
out their jobs. One module might help students learn about an aircraft's AC Power 
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System. In addition to presenting textual, audio, video, and static pictorial resources that 
present the appearance, functions, and use of the AC Power System and its components, 
the learning support environment could also make use of an action context such as the 
interactive graphical simulation depicted in the figures below. This simulation of a 
cockpit control panel can be a behaviorally realistic environment for demonstration and 
practice. 

There are two separate issues to be aware of in this example. First, what should be the 
characteristics of the simulation? Second, how should the training component of the 
learning enviroiraient be able to interact with the simulation to facilitate learning? 

An interactive live simulation—an action context for learning. 

A live simulation is one that permits 
arbitrary sequences of actions by the user. 
In moderately complex simulations, there 
may be billions of possible action 
sequences that users can follow in using 
the simulation. Each action that a user 
takes causes a set of effects analogous to 
those that would be observed in a real 
device. Consider the aircraft AC Electric 
Power control panel shown at the right. 
This panel is used to control AC power 
systems on certain naval aircraft. 

B:,Kn:c no 

'.:.-*!! 

© O 

Figure 1. AC Power Simulation, Initial State 

If the user clicks on the lower half of the 
External Power toggle switch, that switch 
will be put into the Reset position. This 
switch position activates a lamps test 
circuit that causes all the lights on the 
panel to be yellow. 

To actually use the AC power system, it 
is necessary to put the External Power 
switch in the On position, and to put both 
the left and right generators on, and both 
the left and right hand bus switches on. 
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Figure 2. AC Power Simulation 
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In a live simulation, the results of any 
sequence of actions will be correctly 
displayed. In the picture at the right, the 
user has turned the External Power switch 
on and has engaged the left hand 
generator and bus, but has not turned on 
the right hand generator and bus. No 
matter what sequence of operations is 
carried out, this simulation shows the 
consequences at each stage of the process. 
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u 

Figure 3. AC Power Simulation 

Action-centered training. In action-centered training, a training system can monitor 
student actions, can provide instructional feedback in the action context, and can carry 
out actions itself The three figures below illustrate several types of low-level interaction 
that a coach can have in an action environment. These interactions include monitoring 
student actions, controlling simulations to undo student actions, giving students 
informative feedback in the context of the simulations, demonstrating actions in the 
simulation, and monitoring states of the simulation. 

Monitoring actions. An action-centered 
trainer must be able to observe a student's 
manipulations in the action context. It 
must be able to evaluate actions. When a 
correct action is taken, it may be 
appropriate for the training controller to 
give the student informative feedback or 
encouragement. When an incorrect action 
is carried out, it may be useful for the tutor 
to inform the student that the action was 
not correct. 

Control—^Undoing student actions. In 
addition to providing feedback about 
incorrect actions, it is sometimes 
necessary for a tutor to negate the effect of 
a student action during training. If actions 
are not 'imdone', it may be difficult or 
impossible to step the student through the 
proper sequence of actions that is to be 
learned. 

■■^^^w^'i§m% 

Figure 4. Monitoring Actions and Controlling a Simulation for Training Purposes 
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Feedback in the action context. In order 
to draw a student's attention to particular 
objects or elements in an action context 
such as a simulation, it may be helpful to 
graphically highlight an object. In the 
figure at the right, the left hand generator 
switch is made prominent by flashing 
rapidly between two distinctive colors. 
The simulation view carries out this 
highlighting process when directed to do 
so by a training controller object. 

Demonstrating actions. A tutor 
sometimes needs to carry out the steps of 
a procedure in order to teach a student 
how to perform the procedure. In Figure 
5, the student is first prompted to indicate 
that he understands what is being referred 
to. Then the tutor directs the action 
context to emulate the desired action. 
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Figure 5. Instructional Feedback in a 

Simulation Context 

Monitoring states. In addition to 
monitoring discrete student actions, a 
trainer must also be able to monitor a 
simulation or other action context for 
defined states. That is, when a particular 
state occurs, it may be appropriate for the 
trainer to detect that state occurrence and 
to respond instructionally. In the figure at 
the right, the trainer first directed the 
student to 'set up the right generator and 
bus'. It then allowed the student to carry 
out any actions the student chose. When 
the target state was achieved, the trainer 
detected the state and gave the student 
feedback to indicate that the desired state 
had been achieved. 
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Figure 6. Monitoring Simulation States 



Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003 

Components of an Action Centered Learning Environment 

As a result of many years of experience in action-centered learning contexts (Munro, 
1994; Munro, Johnson, Pizzini, Surmon, Towne, & Wogulis, 1997; Stiles, McCarthy, 
Munro, Pizzini, Johnson, & Rickel, 1996) we have developed a consistent organizational 
system for viewing all such environments. From the student user's viewpoint, there may 
be four major visible types of components in an action centered learning system. 

• The visible action context. In the case of simulations, this type of component is 
one or more views of the simulation. In the figures above, the views of the cockpit 
panel are this type of component. 

• Presentation interface. The window with instructional text (In Figure 6, the last 
line says "OK. That concludes the procedure for starting up the AC generator 
system.") is an example of a presentation interface. Other examples of presentation 
objects include video players, audio presenters, and text-to-speech presenters. 

• Commands. The buttons labeled Stop, Don't Know, and Continue are examples of 
commands. These are interface objects that make it possible for a student to carry 
out meta-interactions, such as asking for help or quitting a session. 

• Entries. A coach sometimes must ask a question of a student that 
cannot be answered by carrying out an action in the action 
context (such as the simulation view). Interfaces for gathering 
answers to questions are called Entries. The menu at the right 
contains a set of choices to be offered to a student when the 
question is posed, "What is the value of the External Power 
Available light" in a simulation context such as that shown in 
Figure 2. 

The invisible components of an action centered learning environment. In addition to 
the visible components, an action centered learning environment also has important 
invisible components. These include: 

• The Controller. The Controller component is the tutorial object that controls the 
course of the learning experience. A Controller makes use of the other components, 
deciding whether to respond to commands, directing presentations, and monitoring 
and affecting the simulation (or other action context). 

• The Behavior Model. The component of the action context that determines how 
the simulated system works is called the Behavior Model. 

• The Student Data Framework. Data about the student is maintained for the use of 
the Controller. The Controller can direct that information be stored and can retrieve 
information about the student for use in deciding how to proceed with the learning 
experience. The iRides system includes a mechanism for storing arbitrary data 
during training. This means that it does not at present include a specific type of 
active student model, although the architecture could support the inclusion of such a 
component. 
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While not every action centered learning system has all of these components, this broad 
design may provide a useful perspective for analyzing or designing the structure of such 
systems. 

Instruction in thie Context of Beiiavioral l\/lodels 

One of the key concepts in VIVIDS is that instruction takes place in the context of an 
authored graphical model of a particular (usually complex) man-machine system that 
represents all or many of the relevant characteristics that are to be learned. For example, 
if the domain is the operation of a certain item of medical equipment, then the 
appearance, behavior, and proper usage of that equipment is the domain to be learned. 
Figure 7 shows a student environment with two windows open. The lower window is the 
student instruction window, where instructional text and remedial directions are 
displayed. The upper window is one of several windows in this simulation that contain 
depictions of the domain of interest—^here, a pulse oximeter. Simulation scenes, such as 
the one with the title "Pulse Oximeter" in the figure, provide graphical models that are the 
context for all instruction in VIVIDS. Many elements of instruction can be automatically 
generated by VIVIDS because they are developed in the context of a structured domain 
model. 
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Figure 7. A Student View of Instruction in the Context of a Graphical Model 
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Authors can build complex graphical models by pasting simulation objects into their 
scenes. They can also draw objects directly onto the scenes, using a palette of drawing 
tools, and can specify rules that control the values of object attributes. The finger in the 
figure above is one such object. Authors can open an object data view of the object, such 
as the one shown in the figure below. An object data view of an object shows its name, 
together with a list of its attributes with their values and their rules, if they have any. In 
this figure, there is a rule for the attribute named pulse. The present value of this attribute 
is determined by the rule, which refers to the attribute of another object. 
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Figure 8. Object Data View for a Graphical Object 

Some attributes directly control the appearance of graphical objects. When the values of 
such attributes are changed, objects may disappear, move, stretch, rotate, or imdergo 
other visible changes. 

The iRides Simulator 

Constraint-based programming languages provide a number of benefits over conventional 
declarative languages. Foremost among these is the elimination of much of the burden on 
the programmer to determine the flow of control of program execution. Constraints are 
pieces of code that are executed when values they refer to change. In conventional 
programming languages, the programmer is responsible for determining the order of 
execution of program statements. In a pure constraint language, there is no "order" per se: 
The system of constraints represents a steady-state model of the system being simulated. 
When that system is perturbed by outside influences such as mouse or keyboard input, 
the constraint-firing mechanism in the execution environment is responsible for 
determining when each constraint must be evaluated and in what order. Constraint-based 
languages have a number of advantages, including a reduction in the complexity of the 
programming task, because flow of control is not ordinarily the responsibility of the 
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constraint author. A constraint-firing mechanism in the constraint execution envnonment 
is responsible for determining when each constraint must be evaluated (executed). 
Several constraint-based programming languages have been developed (Leler, 1988; 
Munro, Johnson, Surmon, & Wogulis, 1993; Munro, 1994). Examples of constraint-based 
interactive graphical environments, include Sketchpad (Sutherland, 1963), Thinglab 
(Doming, 1979), and a spreadsheet-based graphics system by Wilde and Lewis (1990). 

Constraint-based programming languages, like other programming languages, can be 
extended through the definition of new fiinctions and procedures. For example, if a 
programming language does not have a square root fionction, a programmer could write a 
new sqrt 0 function in the constraint language that returns the square root of a numeric 
parameter. 

Interactive Representations Controlied by Authiored Constraints 

Some systems for creating interactive graphical environments provide a constraint- 
centered approach to authoring behavior. In such systems, rather than specify what 
should take place when crucial events happen, an author specifies what relationships are 
to endure among values in a system. An example of a constraint-based environment with 
one-way propagation of effects is a spreadsheet authoring application, such as Excel. An 
author specifies that the value shown in cell D is the sum of the values in cells A, B, and 
C. When any of these values is changed by a user, the value of D is also changed. The 
author does not have to specify that the event of a value change in A or B or C should 
invoke the computation of D. 

In VIVIDS and iRides, constraints are written as expressions. Whenever any value that is 
referred to in a constraint expression changes, the expression is evaluated and a new 
value for the attribute is determined. It is not necessary to explicitly state that an 
expression must be re-evaluated whenever the a value referred to in the expression 
changes. Authors need not concern themselves with when a value needs to be recomputed 
if that value is determined by a constraint. 

Results and Discussion 

Network-safe access to simulations and training 

The selection of the Java programming language, together with the utilization of both 
applet and Webstart technologies, helped ensure the implementation of network-safe 
access to simulations and training in iRides. Suppose that iRides had been implemented 
as an independent program—one that was not constrained to operate within the Java 
environment but one that instead had fiill access to the operating system interfaces on the 
students' computers. When that program was downloaded along with a simulation 
specification, the authored simulation system would have access to some powerful and 
potentially dangerous capabilities on student machines. An inimical or incompetent 
simulation author could conceivably write a simulation that could damage files on the 

10 
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Student's computer. Because Java forbids unsafe access in the context of ordinary applets 
and Webstart applications, student computers are protected from these problems. Of 
course, there may be cases in which it is necessary for a training application to modify 
local files. There are two primary ways that this can be accomplished using iRides. One 
is to make the iRides training object a Trusted Applet or a Trusted Webstart appUcation. 
This can be managed by the system administrator at the student's site. The second way is 
to use an application version of iRides, which has full application prerogatives on student 
stations. This approach is presumably acceptable at school sites, where technica,! support 
personnel and training vendors can test and vouch for the beneficence of the training 
simulations that will be installed. 

Ability to Convert Simulations Authored in RIDES and VIVIDS for iRides 

Numerous RIDES and VIVIDS simulations have been exported to iRides file format and 
tested in the iRides application. These include the B2 Landing Gear simulation, the 
Shipboard High Pressure Air Compressor simulation, and the simulation of the Gas 
Turbine Engine Control System on Arleigh Burke class destroyers, which was developed 
under an earlier Virtual Environments for Training project. In most cases, no changes 
were required to obtain identical behavior and virtually identical visuals in the iRides 
versions of these simulations. 

Conversion of DIAG training to iRides 

The most thorough possible test of the iRides simulation delivery system was the ability 
to deliver the DIAG intelligent tutoring system. Almost every capability of the 
RIDESA^IVIDS simulation system is utilized by DIAG and must be supported in the 
iRides delivery environment. However, in order to support DIAG it was not necessary to 
re-develop all the RIDESA^IVIDS instructional system, because DIAG makes use of 
simulation graphics and the simulation behavior language to deliver instruction. 

Early testing of DIAG with iRides revealed that DIAG made use of one aspect of 
VIVIDS that is neither part of the simulation system nor part of the lesson control system. 
That aspect is the VIVIDS Knowledge Unit mechanism. (Knowledge units are networked 
text bodies with indexing attributes and links that attach them to elements of the 
simulation.) Features originally not planned for iRides were implemented in order to 
support those characteristics of DIAG that made use of VIVIDS knowledge units. 

Conversion of autliored BEESiiUI lessons to iRides lesson structures 

Initial content development for the BEESIM course was done by third-party instructional 
developers using VIVIDS. However, the intent was for those lessons to be deliverable 
over networks on a variety of computers. It was therefore necessary to develop a way to 

During the period of the work reported here, a parallel project supported primarily under an extension of 
U. S. Air Force contract F33615-90-C-0001 funded the development of an instructional delivery system 
that works with the iRides simulation delivery software. 
A second implementation of DIAG has since been developed using Toolbook. See Towne (1998,1999). 

11 
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convert those VIVIDS lessons into equivalent iRides lessons. This was done by adding to 
the VIVIDS code the ability to output the VIVIDS lesson as a file that in the format that 
iRides uses for lesson specifications. In addition to being able to execute a Save 
command to save the VIVIDS simulation and lessons as a single (binary) classic VIVIDS 
file, the author can now also save the simulation as an iRides structured text file and save 
the lessons as an iRides lesson file, that is, as an LML file.^ So, in order to run the 
previously developed BEESIM course in iRides, a VIVIDS author needs to 

• save the simulation in iRides format (a .jr file) 
• save the lessons in iRides format (.1ml files) 
• copy these files into the appropriate directory or directories 
• make the standard Java call to start running a lesson 

The conversion vwites out to file a standard header section for an LML file. Then, for 
each part of the VIVIDS lesson (e.g Freeplay, Present Text, Find Object), it writes out a 
chunk of LML code that would behave the same way as the VIVIDS segment. Initially 
this produced very large LML files, which were difficuh to read and debug. This 
observation motivated additional enhancements in later work described in the section 
Continued iRides Development. 

Enhancements to the iRides Simulator 

New data types 

In VIVIDS, there were six types of attribute values that were available to the author: 
number, logical, text, color, point, and pattern. It became apparent some time ago that 
some types of simulations were very difficult to build when restricted to these value 
types. Consequently, imder this contract, two new data types were implemented: arrays 
and object references. 

Introducing arrays actually simplified the data types of iRides. It was no longer necessary 
to have separate Point and Color value types for example, because they can be treated in 
iRides as two-element and three-element arrays of numbers. By avoiding special data 
types like 2_D_Point (for representing locations on two-dimensional surfaces) and 
3_D_Point (for expressing locations in three-space), simulation code can be made more 
general. Instead of using a specific 2_D_Point data type, a simulation could be built using 
a two-cell array, and instead of a specific '3_D_Point or 'color' data type, a three-cell 
array could be used. Further, there were some simulations written using VIVIDS that 
really needed arrays of other sizes; the implementation of these simulations vdthout 
arrays was extremely convoluted. Generalizing fiirther, the individual cells of an array 
can be filled with any of the data types, not just numbers, including arrays. The only 
restriction is that all cells of an array must be of the same type—all numeric, or all text, 
etc. 

'    Saving lessons in the LML file format was funded primarily by the Air Force contract F33615-90-C- 
0001. 
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It was often found in writing a simulation that the easiest, most efficient, and least error 
prone way to write it would have been to have references to objects as a data type. An 
example would be if you wanted to perform some operation on several numeric attributes 
of an object. It was possible to do this in VIVIDS, but it was painful for the author. 
Moreover, if the name of the object was later changed, none of that code would work any 
more. But if you could set some attribute to have the value of the reference to an object, 
then writing that code would be greatly simplified, and if the name of the object was 
subsequently changed, the related rules would not be affected. iRides now implements 
attributes so that their values can be an object reference; also the value of an attribute 
could be an array of object references. 

Extensible simulation language 

In VIVIDS it was impossible for the author to add a new fiinction or procedure to the 
programming language. Take for example the fiinction 'cubeRoot'. VIVIDS did not 
implement this fimction. An author could implement this within one VIVIDS simulation, 
but it would not be available in other simulations. If 'cubeRoot' was needed in several 
simulations, it would need to be written within each one. The only way to make that 
fimction vmiversally accessible would be to modify the source code of VIVIDS and 
recompile it, an onerous task and one that would only be possible if the user had access to 
the source code. Moreover, since VIVIDS uses an interpreted constraint language, such a 
user-defmed fimction would typically run much more slowly than the core 'native' set of 
fiinctions and procedures of the language. This is true because the body of a user-defmed 
fiinction will itself be interpreted, while the native fiinctions of the language will be 
executed from a compiled representation. The structure of the iRides simulation language 
now permits programmers to extend the set of'native' fimctions of the iRides constraint- 
based language. So now a programmer could write a new cubeRootQ fiinction that 
returns the cube root of a numeric parameter. This makes it possible to develop faster, 
more efficient routines. These new user fimctions become part of the language. In fact, 
the standard iRides fimctions are defined in exactly the same way, and they are invoked 
in precisely the same way as the core set of fimctions. Unlike many interpreted 
simulation systems, there is no execution penalty to this flexibility, since the user 
functions are compiled code, not interpreted code. iRides has several techniques that 
together support authored simulations with the 'native' extensibility of constraint-based 
programming languages in the context of program execution envu-onments, such as Java, 
that support reflection. These innovations are: 

1 ControlUng representational objects with an interpreted constraint language, 
2 A method for adding 'native functions' to such an interpreted constraint language, 
3 A technique for specifying the number and data types of the parameters of a 

user-defined constraint language's fiinctions and procedures, and 
4 A method for specifying the external triggers of user-defined constraint language 

fimctions and procedures. 

When a user wishes to extend the constraint programming language with a new fimction, 
he or she must create a new class derived from the constraint language fimction base 
class. This derived class must specify the behavior of the new fimction by overriding the 
computeO method. 
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Object templates and clones 

In some VIVIDS simulations it was desirable to create a set of similarly behaving 
objects, for example, each of the objects would have its own location, but the movement 
of all the objects might be governed by the same rule. This could be done by creating one 
object then making copies of it and modifying the location of each of the copies. A 
problem occurred if the author later decided that the rule governing movement needed to 
be modified; it then became necessary individually to edit the movement rule in each of 
objects. It became clear that a notion of object templates and clones would be useful; this 
was implemented for this contract. The process the author can now use is to create one 
functioning object, complete with behavior rules, and then define a template based on 
that object. Then clone objects can be created using that template as a basis. Each clone 
inherits the rules specified in the template. Then if a rule in the template is later modified, 
the corresponding rule in each of the clones is automatically modified in the same way. If 
an attribute of a clone does not have a rule specified by the template, a rule can be v^itten 
for that clone, and the other clones v^U not be modified in a parallel fashion. Also, if a 
clone attribute does not have a rule attached to it, its value can be changed at will. Using 
these mechanisms a set of similarly behaving objects can easily be created and modified, 
but the clones can be individualized to some extent by means of their own private rules 
and values. 

Graphical improvements 

Several major new graphic features were developed for iRides under this contract, 
features that were not present in VIVIDS. 

• Full support for alpha-channel transparency, including animating transparency 
{i.e., fading in and out). 

• Gradient support, both cyclic and non-repeating. 
• Support for full-color JPEG format images, as well as the older GIF format. 
• Support for textures (using an image to fill an object, instead of a solid color) 

using the above image types, for all shapes. 
• TrueType font support. 
• Full antialiasing, for both shapes and text. For performance purposes, 

antialiasing can be turned on and off for shapes or text independently. 
• Scenes are now scaleable, so zooming in on an object or area is now feasible. 

Textures, fonts and transparency in particular are the three most important advances. 
With these three new features, many new graphical effects are available that were either 
very difficult or simply impossible before can now be employed in iRides simulations. 

Simulator Support for Interactive Debugging 

VIVIDS included a runtime interactive debugger. A stepping debugger can be a very 
useful authoring aid, because it allows an author to trace the execution of the constraints 
and events of a simulation in a step-by-step manner. The author can also test for the 
values of attributes and expressions during the execution sequence. These capabilities 
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have been found to promote the rapid development of accurate and predictable behaviors. 
During this project, 'hooks' were introduced into the simulator to support debugger 
notification and the process of stepping through a simulation's rules under the control of 
the author. A debugging interface was designed that would introduce additional features 
to improve the usefiilness of the simulation debugger in iRides. In particular, the new 
debugger would support three new features not available in VIVIDS. 

• Stepping into author-defined event functions. In many cases, authors do not need 
to see the step-by-step execution of the statements of a well-defined event body 
that has already been thoroughly tested. Introduction of a Step Into command 
makes it possible for authors to step over their reusable behavior components 
specified in events under ordinary circumstances. 

• Stepping out of event functions. Sometimes an author wants to step into an event 
while tracing a simulation in order to observe a portion of its execution. Once the 
statements of interest have been executed, the user can choose Step Out to 
complete the remaining statements of the event without stepping through them 
all one-by-one. 

• The evaluation of arbitrary expressions. In classic VIVIDS, an author would 
have to create dummy attributes and give them constraint rules in order to 
evaluate arbitrary expressions. A special expression evaluation interface was 
designed for entering and evaluating arbitrary expressions during the debugging 
process. 

This design and the underlying implemented features were rapidly exploited in follow-on 
work on the iRides system. See Continued iRides Development, below. 

Editors for Authoring Simulation Behavior in iRides 

A view of the major editors of the iRides authoring application is shown in Figure 9. This 
Java application can run in all the modem Windows environments (Windows 98 and 
later). In the application version, authors can have access to the internal behavior data of 
a simulation, which they can modify on the fly. In Figure 9, the leftmost window is the 
top data view of the behaving objects of an iRides simulation. This is a hierarchical list of 
objects and the scenes that contain them. 

Each scene contains a group of behaving objects, and those objects themselves may be 
groups, containing other objects. An author can open objects in the list to view their 
component objects. Any object can be selected at any level, and an object data view can 
be opened. The lowest window in Figure 9 is an example of an object data view. This 
object is named Readout and is part of the CurrentReadout object on the Visualization 
scene. Every object has a number of attributes. The rightmost window is a data view for 
an attribute named Current that is part of the same Readout object. The attribute has a 
rule that determines its value. This rule can be modified in the data attribute view. As 
soon as the Accept button is pressed, the rule is parsed and formatted to reflect the 
parser's understanding of the behavior specification. At the same time, the simulation is 
updated with the new rule, and the interactive behavior of the simulation will 
immediately reflect the new or revised rule. 
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Figure 9. The Behavior Authoring Interface ofiRides 

Authors can us the File menu's Save and Save as... commands to save the entire 
simulation specification file, retaining any changes made using these editors. 

Support for BEESIM 

Phase 1: Serving as a Resource to the BEESIM Designers and Authors 

After more than a year of development by a CBT vendor, the first author was given the 
opportunity to serve as a resource to the design and development staff of that company 
who were working on the BEESIM project. 

Several challenges to the success of the BEESIM goal became evident, including these: 
• The third-party developers of BEESIM made unexpected uses of VIVIDS 

features in order to create page-turning user interfaces, rather than the more 
normal (for VIVIDS and iRides) teaching-in-the-context-of-a-simulation 
interface. They also developed some specialized assessment interfaces that were 
not at all the originally intended type of application for VIVIDS. These authoring 
practices made the transition to iRides more difficult. 

• Some computer programmers on the third-party BEESIM development team 
apparently did not understand the ability of the simulator to automatically 
maintain constraint relationships among attribute values. They were drawn to 
recreate features of the simulation engine using the VIVIDS simulation 
language. Confiision and inefficiencies resulted. 

• The VIVIDS structure of 'courses' and 'lessons' did not match well with the 
uses to which simulation was put in BEESIM. In particular, the detailed design 
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of BEESIM sometimes called for the use of a succession of simulations in a 
single lesson. Classic VIVIDS could support only one simulation for a lesson. As 
a result, many small lessons had to be stitched together with the VIVIDS 
'course' mechanism in order to create a single lesson of thirty minutes or an 
hour. This result stimulated the later development in iRides of the capability to 
close a simulation and open new ones within a lesson. In addition, a scalable 
approach to pedagogical structure was added to iRides, as is described in the next 
section of this report. 

•   Some BEESIM lessons contained multiple copies of complex behaving objects 
on different 'pages' (different parts of the 2D simulation world). More 
experienced VIVIDS developers might have moved and reconfigured the objects 
for use at different points of the lesson, using standard VIVIDS features. As a 
result of the explosion in behavior rules (a complete set for each such object), 
VIVIDS lessons in BEESIM sometimes bogged down, and crashes often resulted 
due to data reference errors. This was another inducement to the original 
BEESIM developers to divide lessons up into very small, more reliable chunks. 
(iRides, which makes use of the automatic recovery of unused memory in Java, 
does not suffer from this fragility.) 

These findings led to a number of redesign decisions in iRides. For example, in order to 
support larger lesson structures, iRides was redesigned to support closing and opening a 
succession of simulations within a single lesson. It was also redesigned to support 
marking sub-lessons as complete and suitable for purging from memory. These features 
permit the development of large lessons that need not impose very large memory 
demands on the student's computer at run time. 

Phase 2: The BEESIM II Project 

In the last six months of this project, an experimental extension of the iRides system was 
undertaken in an attempt to implement a new set of lessons about circuit theory for a 
Basic Electricity and Electronics course. The original plan for the USC effort on 
BEESIM2 was that a subset of the required simulated equipment lessons would be 
developed using a General Analysis product called Re Act. The project was being 
coordinated out of NAWC/TSD, coordinating the efforts of the original third party 
BEESIM authoring team, the pedagogy consuhant Henry Halff, and the USC team. Our 
NAWC/TSD project coordinator determined that a higher priority was to come up with a 
new, more dynamic approach to teaching circuit behaviors in the context of simulations. 
(The third party authoring team undertook the completion of the required simulated 
equipment lessons.) The design of this new software system was developed by Henry 
Halff (2001). The goal of this design was to provide effective web-delivered lessons on 
electric circuits. These lessons were to be driven by authored specifications of several 
types, and were to integrate simulation and instruction in an effective way. 

Halff s plan called for the use of a progression of models of circuits. It employed both 
qualitative and quantitative reasoning approaches, and it sought to contextualize learning 
in realistic circuit contexts. The student interface was to provide a number of tools to 
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support self-directed learning and self-help in the context of assigned tasks. Four major 
types of task environments were envisioned. 

• Directed exploration in the context of breadboard simulations 
• Interactive visualizations for explaining or clarifying concepts 
• Working with on-Une technical manuals 
• Applications—^Answering questions about real devices that exemplify the 

characteristics of the illustrated circuits 
A variety of activities were to be assigned in these learning contexts. 

Specification based training is 
accomplished by using a delivery system 
that can read the specifications and deUver 
interactive training based on them. The 
delivery system envisioned by Halff could 
not be the standard iRides system alone, 
because the specification formats he 
prescribed were not simply the two 
specification formats of iRides (the 
simulation language format and the LML 
training specifications). 

Authoring Tools: 
Database Editors 
HTML Editors 
Grapiiic Editors 
VIVIDSfiRidcs 

Courseware 
Specification 

Delivery Frameworlc: 
Database Programs 

Scrvlets 
HTML Browser 

iRides 

Student-Courseware 
Interactions—^Runtime 

Figure 10. Several Types of Specifications 

The many specification formats of BEESIM2 were to be these 
1 1^ 1                                  

Format Uses in BEESIM2 

iRides simulation files (.jr) Breadboard simulations 
Interactive visualizations 
Certain applications 

HTML Forms Structure of problem sets 

Problem Data (Type of database table) Content of problem sets 

Exercise control specifications (in LML) Conduct (presenting, judging, 
remediating) of exercises 

Exercise Data (Type of database table) Content of exercises 

Prerequisite Network Data (Type of 
database table) 

Adaptive lesson selection presentation 

Class enrollment (database table) Login interface 

As can be seen from the hst of learning contexts shown in the Uses column of the above 
table, many delivery mechanisms had to be developed to realize the Halff design. Once 
these delivery mechanisms were developed and tested, the databases and other 
specifications could be populated, and the BEESIM2 trainer would be a reality. 

Delivery Mechanisms for BEESIM2^ 

' This section is adapted from Halff (2001, personal communication). 
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Adaptive lesson selection 

The delivery of the adaptive lesson selection view was accomplished by creating a 
dynamic web page driven by servlets, written in Java, resident on the web server. The 
servlet code accesses two kinds of data: the lesson prerequisite table and the record of 
this student's experience with each lesson. Clicking on a lesson name causes an HTML 
lesson preview page to be shown in the frame at the right. The data about which page to 
show is also stored in a database table and is accessed by the servlet that constitutes the 
delivery mechanism for this user interface. The student begins the selected lesson by 
clicking on a Start button below the lesson preview frame. 

The Breadboard Circuit View 

One of the servlets composes the page for the Breadboard Circuit View. The frame 
includes the version of the simulation that most closely represents the circuit being deah 
with. As we see in Figure 11, the breadboard view can contain fairly realistic 
representations of a switch, a light, a battery, and a multimeter. The student can 
manipulate the various parts of the breadboard simulation and immediately see the 
results. In the top right comer of the frame is some general text describing what is being 
represented and what can be done with the simulation. To the left of that text, is a box of 
text that is more specific. It might discuss a particular aspect of the simulation, such as 
what you can expect to see if you perform various manipulations. Finally, in the lower 
right corner of the frame is an exercise that requires the student to respond to various 
questions, usually after performing some operation with the simulation. The table in this 
section is a new feature developed with this contract. A box with a white background 
indicates that the simulation has at some time since this exercise began been in a state 
that would provide the student with enough data to answer the question related to that 
box. In the example shown, the box represents the question "When the Switch Position is 
Open, what is the state of the Light?". As the student manipulates the switch and the 
multimeter, other boxes become white, indicating that the student should be able to 
answer that portion of the question. When a student selects a white box, an interface 
opens for the student to enter his or her answer to that box's question, and that answer 
gets inserted into the box. When all boxes have been filled, the student clicks the 'Enter' 
button (not shown in this figure) to signify that he/she is ready to be evaluated. The 
instructional code underlying this table question then evaluates the table as a whole, and 
reports whether enough boxes have been filled in correctly. 
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Figure 11. The Breadboard Circuit Interface 

The Visualization View 

The same servlet that composes the Breadboard Circuit View also composes the 
VisuaUzation View. This is done when a'VisuaUzation' button is selected. Two text 
boxes at the top of the window serve the same basic function that they do for the 
Breadboard Circuit View; the right hand one gives general information about the view, 
and the left hand one gives more specific information, depending on how far along the 
student is in the exercise. The bottom left box contains an iRides simulation, but this one 
is less realistic and more abstract. Also it can include pieces that don't exist in the real 
world, but which can contribute to student understanding by giving the user opportunities 
to interact with a simulation-based visualization. An exercise is provided to the student 
that the student can complete by carrying out mini-experiments in the simulation view. 

Problem Set Lessons 

A Problem Set Lesson consists of a set of questions that the student is expected to 
answer. In the problem set lessons there are three types of problem questions: "Fill-in" 
(text and numeric), "radio buttons", and "check box". The problem data is expressed as a 
plain text (ascii) file, and is formatted such that each question is contained in a "Question 
Definition Section" consisting of a "Question Definition Line" followed by a number of 
varying format "Sub-Question Definition" lines, one such line per sub-question. In 
addition, a "hinting" mechanism is supported. Problem Set lessons are handled with 
servlet-based Dynamic HTML, and were implemented without using any of the standard 
iRides components. 
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The Adaptive Glossary 

As the student moves through instructional material, he/she is introduced to various 
terms. The Adaptive Glossary is a current snapshot of terms introduced in the current 
lesson as well as all terms introduced in all previously visited lessons. The glossary is 
comprised of three main components. The Lesson T erms view (upper left view of Figure 
12, labeled "Lesson Terms"), the All Terms view (lower left of Figure 12, labeled "All 
Terms"), and the Term Definition view (center view of Figure 12). The glossary is 
comprised of HTML, created dynamically and delivered via a Java servlet embedded 
within a web server. The servlet constructs the page through a series of interactions with 
a relational database containing links to glossary definition text, glossary-lesson 
relationships, and current and past lessons visited by the student. When redrawn, the 
glossary servlet queries the database for the current student and lesson. With the current 
lesson, the servlet then queries the database for a list of all terms introduced by that 
lesson. The Lesson Terms view is created from this list. To build the All Terms view, the 
servlet queries the database for a list of all previously visited lessons by the current 
student, and then this list is used in another query to determine all previously introduced 
glossary terms. Clicking on a term from either term view initiates the creation and display 
of the last view, the Term Definition view. The servlet, notified of the request to view a 
particular term queries the database, using the selected term, for a link to the HTML page 
containing the desired term definition. 
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Figure 12. The Adaptive Glossary Interface 

The Procedure Glossary 

In addition to introducing terms, lessons introduce various procedures. The Procedure 
Glossary is a current view of all procedures introduced up to the time the glossary is 
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redisplayed. The glossary is comprised of HTML, created dynamically and delivered via 
a Java Servlet embedded within a web server. The Procedure Glossary is very similar in 
design and functionality to the Adaptive Glossary, with the difference being the nature of 
the data residing in the relational database. 

The Circuit Simulations 

The set of progressively more complex circuits to be used in Halff s design can be viewed 
as instances of one complex circuit in particular configurations. Rather than author each 
of these simulations independently, we developed a single simulation, shown below in 
Figure 13, that comprises the behavior of all the others. An authoring interface was 
developed, using the iRides simulation language, to let authors quickly build and save 
each of the required simulation variants. When authors hold down the mouse on any 
active component in this circuit, a popup menu appears that allows them to select what 
type of component should appear at that point. In this way, an author can quickly build a 
variant of the circuit and test it for use in a lesson. 
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Figure 13. The Circuit-authoring Interface 

The behavior of breadboard circuits and visualizations can be driven from this underlying 
circuit simulation. That is, the values that are computed for cvirrent and voltage in this 
simulation can be observed by the simulation views that students actually see. 

Results of the BEESIM2 Effort 

During the course of this project, all the data formats were designed, and all the major 
delivery mechanisms were developed and tested. Two small lessons were developed, a 
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circuit lesson and a problem set. The major mechanisms are now in place for the delivery 
of circuit theory lesson content based on authored specification. Significant efforts would 
be required, however, to develop all the planned content that could be delivered by this 
system. 
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Learning Environments: New Computational Technologies to Support Learning, Exploration, and 
Collaboration. Amsterdam: lOS Press, 360-367. 

Munro, A., Breaux, R., Patrey, J. and Sheldon, B. (2002) Cognitive aspects of virtual environments design. 
In Stanney, K. (Ed.), Handbook of Virtual Environments. Mahwah, New Jersey: Lawrence Erlbaum 
Associates. 

Munro, A. (in press) Teaching in the context of authored simulations. In Murray, T. (Ed.) Authoring Tools 
for Advanced Technology Learning Environments: Toward cost-effective adaptive, interactive, and 
intelligent educational software. Dordrecht: Kluwer. 

Continued iRides Development 
Status of the Software 

iRides development has continued since the end of the Intranet Delivery of Simulation- 
Centered Training project. This work is supported by the Future Navy Capability (FNC) 
program through grant NOOO14-02-0179 to the Center for Research on Evaluation, 
Standards, and Student Testing (CRESST) at UCLA. CRESST, in turn, has issued award 
0070-G-CH640 to the University of Southern California. Many of the lessons of the 
project covered in this final report have helped to guide continued iRides development 
under FNC funding. 

Completion of the iRides Debugger. 

The new iRides debugger completes the design and preliminary implementation begvm in 
the Intranet Delivered Simulation project. It is used by authors to understand why a 
simulation is not behaving as expected, perhaps due to a mistyped rule or due to an 
interaction of rules not foreseen by the author. The debug editor can be used to examine 
the attribute constraints just as they are about to be evaluated and event statements just as 
they are about to be executed. This interface is often used in conjunction with paused 
attributes and with the simulator's Step capability, which steps through rules at the 
direction of the author. Also the author can use the Step In and Step Out capabilities for 
greater control over the debugging of event bodies. If the author does not want to dive 
into a particular event body, the Step command is used. If the author wants to pause at 
each line of the next event body, the Step In feature can be used; if no further lines within 
the body of that event are of interest, the Step Out feature is used. Using the debug editor 
together with pause and/or the Step command, the author can 
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• observe the name and the structure of the next rule to be run 
• select and evaluate expressions within the body of the rule to be run next 
• observe the list of names of attributes and events marked as paused 
• specify which attributes or events to stop for when stepping. It is usually the case 

that only a few attributes or events are 'interesting' when debugging, and it is a 
waste of effort for the debug editor to pause for other items when stepping 
through the simulation. 

The simulation parser's treatment of comments in defined simulation events had to be 
modified so that the parser's line numbering could be used by the debugger's pretty- 
printing routines. This makes it possible to show the text of the event, including the 
comments, and to accurately point in the debugger to each statement as it is executed in 
turn by Stepping. In Figure 14, the pointing hand icon at the left indicates which line of 
the iRides Event will be carried out next, when the Step button is pressed. Clicking on 
Step Out would complete the entire event without stepping through the remaining 
statements individually. The debugger can handle nested DoEvents (that is, nested 
function calls in the iRides simulation language). In addition, pretty-print routines display 
the simulation language with formatting that enhances the user's understanding of the 
structure of the simulations. 
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I'vaktuti: 
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.sys.inBusSiNitch.toggle.HandleCllck. 
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Figure 14. Debugging Window with Formatted Simulation Rules 

Scalable lesson/course structures. 

Challenges encountered in the VIVIDS-based BEESIM course structures helped to 
motivate a more scalable approach to specifying course and lesson structure. In current 
(September 2003) iRides, any lesson can incorporate any other lesson by reference. That 
makes it possible to create complex hierarchical lesson/course structures with multiple 
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layers. Only two levels—lessons, which could have only one simulation, and courses, 
which could refer to multiple lessons, but could not contain other courses. Only two 
levels of pedagogical grouping were possible. Any level of pedagogical nesting is 
possible in the new iRides. That gives instructional designers more flexibility, and they 
don't have to learn about two completely different types of specifications: that for 
courses and that for lessons. 

Improved LML file structure to limit size and improve readability. 

As described above in Results and Discussion, the experience of working with the 
automatically exported LML lesson specifications fi-om the BEESIM lessons pointed out 
the need for a more succinct representation that was easier to read and make sense of A 
recent implementation has made good use of the iRides construct lesson templates. In this 
approach, an LML lesson file only needs to specify certain information about each lesson 
segment. During lesson delivery, the training controller uses the file together with 
separate, standardized files that specify all the invariant details. As an example, the code 
for a 'find object' lesson segment in VIVIDS needs to know what object the student is 
supposed to find, but imless the author has specified otherwise, assorted output texts are 
generated automatically, such as 'No, that is not correct. Try again.' or 'You have run out 
of time.' The initial LML conversion files could be as much as 50 lines long just to 
handle each simple Find Object item. However, with the use of lesson templates, the 
same result can be achieved with as few as three lines: 

<use href="Tfind.lml#VFind"> 
<setProperty name="Object" value=".Front_Panel.Power_Light."/> 

</use> 

The first line specifies the name of the template file that is to be used. The template file 
takes care of the looping—^repetitions in case that student's first attempt is incorrect—and 
all the text that will be displayed in various situations. The second line specifies the 
object that is to be found. And the third line is just to close off the 'use' item. If the 
author had chosen to display text other that the standard boilerplate found in the template, 
(s)he could do so in the VIVIDS lesson, and this would resuh in additional 'setProperty' 
lines in the LML file. By incorporating lesson templates into the iRides files dumped by 
VIVIDS, those iRides files, in addition to becoming much shorter, became much more 
readable. 

iRides Availability 

For information about accessing the iRides software and examples of iRides simulations 
and lessons, contact Allen Munro, munro@,usc.edu. 
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